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Exact solutions for some coupled nonlinear equations: I1 

Lan Huibin and Wang Kelin 
Centre for Fundamental Physics, University of Science and Technology of China, Hefei, 
Anhui 230026, People’s Republic of China 

Received 24 November 1989, in final form 28 March 1990 

Abstract. This work is the continuation of paper I [l]. Here we use the method in [ l]  to 
obtain the exact solutions for some coupled nonlinear equations. 

As we know, coupled nonlinear equations will arise when we consider more than one 
type of interaction and more than one type of component in real physical systems 
12-41, To find the exact solution of the coupled nonlinear equations will be quite 
important in order to obtain a knowledge of the system. Here we deal with three kinds 
of coupled nonlinear equations by the method in [l]. 

The first coupled equations we deal with are the coupled nonlinear Schrodinger 
equations that arise in the study of monomode step-index optical fibres [ 2 ]  

.aA+ a2A+ 
- = -+ A+( / A + / 2  + h lA-I2) 
a7 ax2 

. a ~ -  a2A- --=---+A-(IA-(~+ h l ~ + l * )  
d r  dX2 

where A’ and A- are the amplitudes of the electric field and h is a parameter (see [2]). 
In [2], Newboult er al have obtained some exact solutions of the coupled equations 

(1) and (2). Here we present another type of exact solution of it. Let 

A + =  A,(x)  exp(ip,.r) (3) 

A- = A2(x) exp(ip,r) (4) 
where p1 and p2 are two parameters. 

The equations (1) and ( 2 )  will become 

We make an ansatz for the solution: 

A,(x)  = a tanh px 

A2(x) = b sech px 

where a, b and p are the parameters to be determined. 
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Inserting equations ( 7 )  and ( 8 )  into equations ( 5 )  and (6 ) ,  equating the same power 
of tanh p x  and sech px,  respectively, we obtain the following parametric equations: 

-2ap2+pla + hab2=0 ( 9 )  
2ap2+ a3  - hub2 = 0 (10) 

bp2+p2b+hba2=0 ( 1 1 )  
- 2 bp2 + b3 - hba2 = 0. (12) 

a = * G  (13) 

b = *[(2P2 - Pl ) / (h  - 2)l’” (14) 

P = [Pl ( l+ h)/21’” ( 1 5 )  

P* = 2P2/(h - 1 ) .  (16) 
Thus we obtain one type of exact solution with one arbitrary parameter p 1  (or p 2 )  

From equations (9) to (12) ,  we have 

and one constraint equation for p 1  and p 2 :  

as follows: 

A t =  *G tanh[ *( pl)’’2x]exp (iplT) 

A- = *& sech[ *( P ~ ) ’ ’ ~ X ]  exp( i Pl(h + 1 )  7). 

As the coupled equations ( 5 )  and ( 6 )  have some symmetry for the variables A+ 
and A-, we also have the following solutions: 

A+=*(a)‘’2sech[ * ( - P ~ ) ” ~ X ]  h + l  exp(ip,T) 

A - =  *( 
h - 1  h - 1  

tanh[ *( - h + l  pI)’;’x] exp( i *). 
1 - h  h - 1  h - 1  

Following the same formulae of [ 2 ] ,  we obtain the electric field as follows: 

E “ ) = * 2 f i t a n h [  * ( ~ p l ) 1 ’ 2 ~ ) 1 ’ 2 v ( z - s f ) ]  h + l  

x ( - i . , e r s i n [ s + ( k + ~ v 2 ) z - u t ]  

(17’) 
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v ( z - s t )  
E “ ) = * 2 ( ~ ) ” 2 s e c h [ ( - p l ) 1 ’ 2 ~ ) l i 2  h + l  ] 

h - 1  h - 1  

x { -Eler sin[ 6 +  r*+ k ) z  -ut]  

+(E2e8+E3ez) COS [ 6 +  ( k+- f 2 ; v 2 ) z - w t ] }  

+ 2  [ * ( - l - h  2p1 )] tanh[ *( h+l h - 1  p , ) 1 ’ 2 e ) 1 ’ 2 v ( z  - s t ) ]  

x { -E, e, sin[ - 6 - ut + ( k + f[yfril) z ]  

J 

- - t ] } .  

The second coupled nonlinear equation is the extension of the coupled nonlinear 
equations in [3], which can be written as follows: 

U, + aV2  V, + p U 2  U, + A VU,  + y U,,, = 0 

v, + 6 (  UV) ,  + & O W , +  E 1  v,, + E2Vxxx = 0 

(20) 

(21) 

where a, p, A, y, 8, eo ,  E ,  and are parameters. 
When E ,  = = 0, equations (20) and (21) reduce to the case that was treated in [3]. 
We look for travelling solutions of equations (20) and (21), that is, we assume that 

U(x ,  t )  = U ( x - u t ) =  U ( ( )  

V ( x ,  t )  = V ( x  - w t )  = V ( ( ) .  

(22) 

(23) 

Inserting equations (22) and (23) into equations (20) and (21), and integrating 
them, we get 

- WU +fa V 3  + fp  U 3  + ~ A U ’  + YU,, + CO = 0 

c, - w v + s uv + f E o  v2 + E , v, + E 2  v,, = 0 

(24) 

(25) 

where CO and C, are two integration constants. 
In [3], they take CO to be zero, in order to obtain the exact solution by integrating 

equations (24) and (25). Here we show that when CO # 0, we also have a similar exact 
solution. 

In the following, we treat cases with different parameters. 

Case A. E ,  = e2 = 0. We assume 

U =  a +  b tanh u t  (26) 

V = c + d  tanhp(. (27) 

Inserting equations (26) and (27) into equations (24) and (25), equating the same 
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power of tanh p.5, we get the following parametric equations: 

+&c2 + Sac + C ,  - wc = 0 (28) 

cd&o+ 6( ad + bc)  - wd = 0 (29) 

!sod + Sbd = 0 (30) 

- wa +;ac3  ++Pa3 ++ha2+ CO = 0 (31) 

-wb+ c2da + a2bp  +hub -2bp2y  = 0 (32) 

cd2a  + ab2P ++Ab2 = 0 (33) 

a d 3  + Pb3 + 6byp2 = 0. (34) 

c = ( A S E ~ + ~ P W E ~ ) / ( E ~ P  -8a3a)  (35) 

a = ( 2 w  - ~ , c ) / 2 6  (36) 

From equations (28) to (24), we get 

p. = [$ ( A a + a 2 p  - w  -- 
EO 

(37) 

d =-(2S/~o)b.  (39) 

When we do the following parametric transform in equations (37) to (39) respec- 
tively: 

1 1 - 
2 7 - 7  

equations (24) and (25) have the following solutions: 

(42) 

(43 1 
where the parameters a, b, c, d and p. are the same as those for the solution of equations 
(26) and (27), but taking the transform of equations (40) and (41) into consideration 
in equations (37) and (39). 

The solution of equation (26) and equation (27) is similar to that in reference (3), 
but this time the integration constant is not equal to 0. The solution of equation (42) 
and equation (43) are new and cannot be obtained by the method in reference (2). 

Case B. e 2 = 0 .  This case cannot be treated by the method used in [3], as the two 
variables cannot reduce to one variable. However, following the same procedure as 
above, we obtain the exact solution in the form of a simple combination of hyperbolic 
functions. For convenience we only give the results. 

U = a +  b sech p.6 

V = c +  d sech p6 
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We have 

U = a + b tanh ~6 

V = c + d  t a n h p 6  

where 

Bo= &1p(aS + EOC - w )  

CO = S(aS +SCEO--  w )  

and one constraint equation for the parameters a, c, A, y, a, p, and e l :  

a d 3 + p b 3 + 6 y b k 2 * O .  

Case C. =O. We have 

U = a + c tanh2 p6 

V =  d + f tanh2 p 

where 

(441 

(45 )  

(53) 

(54 )  

( 5 5 )  
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and one parameter constraint equation relating f; a, p, A, 7, 6, eo and E ’ :  

f 2 [ a B 2 + p a o ( E B + 2  F)’] + f [ 2 a A l 3 + 2 ( E A + : ) ( E B + y F )  

+pao( E A + j ) 2 + n a o (  EA+:) =o. 

Case D. y=O. We have 

U = a + b tanh p [ +  c tanh’ p[ 

V = d + e tanh r*.[ + f tanh’ p[ 

where 

f = ( - p / a ) ’ / 3 c  

AI = -A/2P (70) 

B1= -( L Y / / ~ ) ’ / ~  (71 )  

c, =[pc(sc+&~f)-6faC(p/a)2~3]-’pCf (72 )  

x ( p c & I ~ e + 8 f p 2 & 2 ~ ~ - 6 b e p c - p c & o e 2 + ~ S f c A )  (73) 

- w e +  6 ( a e +  b d )  + & & = + 2 f ~ ~ r * .  -2ep2e2  = 0 

D , = [ ~ c ( ~ c + E ~  f ) - 6 f a ~ ( p / a ) ~ / ~ ] - ’  

and two parameter constraint equations for c, a, p, A, 6, E ~ ,  E ’  and E ~ :  

(74 )  

(75 )  - w c + [ a ( d e 2 +  d ’ f )  + p ( a b 2 +  a’c)] +;A( b2+2ac)  - 8 c p 2 y  = 0. 
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The third coupled nonlinear equations are coupled equations, which can be written 
as follows (see [ 4 ] ) :  

(76) 
d’ U 
ds2 

m( C; - V’) - = AU - 2Kp’ U - BU2 + CU3 - DVU, 

M (  V i -  V’) ,=-MClip-2KP( d2P U’- U; ) -  EVps. 
ds  (77) 

When the coupled interaction term has the form Kp( U’- U:), and D and E are 
zero, the coupled equations (76) and (77) reduce to the case that was considered in [ 4 ] .  

We discuss the different parameter cases separately. 

The first type of solution can be written as follows: 
Case (i). All parameters not equal to zero. We have two types of solutions. 

U =  a + P  tanh ps 

p = y +  6 tanh ps 

(78) 

(79 )  
where 

and three parameter constraint equations for A,  B, C, D, E and V :  

SAEa =(2Kay’+Ba2-Ca3)ESO- D[mCliy+2Ky(Ui-a’)]Po ( 8 5 )  

-2P0p2m(C;-  V 2 )  = APo-2K(2ySoa +poy2)-2BaPO+3a2POC ( 8 6 )  

(87) 

(88) 

280p2M( V i  - V’) = MSoCt~+ 2K [ 2 ~ r P o y  + So( a’ - U:)]. 

U = a + P  tanh p[ 

The second type of solution is as follows: 

p = S sech p.5 

where 

= * E V / 4 [ K M ( V 2 -  Vi)]”’ 

P = * [ M (  V 2 -  Vi ) /K]”’p  E Pop 

S = * { [ 2 m ( C i -  V 2 ) -  CP0]/2K}”’p = a0p 

p, = *[ (2Ba - A - 3 Ca2) /  CPi]”’ 

2m(C!-  V2)+2p;C+- 
a 
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(97) 

a 
D3 = 5 [2m ( C: - V’) + 2 p i C ]  

P O  

and one constraint equation for C and A: 

-MCli=p*M( V i -  V 2 ) + 2 K ( a 2 + P 2 -  U:). 

Case (ii). B = 0. We shall have 

U = p sech ps 

p = y + S  tanh ps 

where 

A - 2 K y 2  ’=( m(C: -  V’)+2KS; 

(107) C = [2KS;-2m(Cg- V’)] /& 

and one constraint equations for A, B, C and K: 

(108) 

When D = E = 0, we may point out that equations (76) and (77) have the following 

M a g  = 2KUi .  

algebraic soliton solution: 

1 U=- 
a + bs2 

P p = f f + -  
a + bs’ 
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where 

-B+ (B2-8Ka2C)”2 
4Ka P =  

(4KaP + B )  b = -  
6m( C i  - V’) 

( p 2  - C / 2  K )  Vi - m /  M C ;  
V = (  p 2  - C / 2 K  - m/ M 

and one constraint equation for the parameters A, B, C and K :  

MCli=2KUg.  (116) 
One can see from the above that the solutions for the coupled nonlinear equations 

are richer than that for a single nonlinear equation. We shall apply these exact solutions 
to real systems like those treated in [2-41. This is our future work. 
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